Zero-temperature entanglement membranes in quantum circuits

Grace M. Sommers, Sarang Gopalakrishnan, Michael J. Gullans, David A. Huse

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In chaotic quantum systems, the entanglement of a region A can be described in terms of the surface tension of a spacetime membrane pinned to the boundary of A. Here, we interpret the tension of this entanglement membrane in terms of the rate at which information "flows"across it. For any orientation of the membrane, one can define (generically nonunitary) dynamics across the membrane; we explore this dynamics in various spacetime translation-invariant (STTI) stabilizer circuits in one and two spatial dimensions. We find that the flux of information across the membrane in these STTI circuits reaches a steady state. In the cases where this dynamics is nonunitary and the steady-state flux is nonzero, this occurs because the dynamics across the membrane is unitary in a subspace of extensive entropy. This generalized unitarity is present in a broad class of STTI stabilizer circuits and is also present in some special nonstabilizer models. The existence of multiple unitary (or generalized unitary) directions forces the entanglement membrane tension to be a piecewise linear function of the orientation of the membrane; in this respect, the entanglement membrane behaves like an interface in a zero-temperature classical lattice model. We argue that entanglement membranes in random stabilizer circuits that produce volume-law entanglement are also effectively at zero temperature.

Original languageEnglish (US)
Article number064311
JournalPhysical Review B
Volume110
Issue number6
DOIs
StatePublished - Aug 1 2024

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Zero-temperature entanglement membranes in quantum circuits'. Together they form a unique fingerprint.

Cite this