TY - GEN
T1 - Zero-fixing extractors for sub-logarithmic entropy
AU - Cohen, Gil
AU - Shinkar, Igor
N1 - Publisher Copyright:
© Springer-Verlag Berlin Heidelberg 2015.
PY - 2015
Y1 - 2015
N2 - An (n, k)-bit-fixing source is a distribution on n bit strings, that is fixed on n − k of the coordinates, and jointly uniform on the remaining k bits. Explicit constructions of bit-fixing extractors by Gabizon, Raz and Shaltiel [SICOMP 2006] and Rao [CCC 2009], extract (1 − o(1)) ・ k bits for k = poly log n, almost matching the probabilistic argument. Intriguingly, unlike other well-studied sources of randomness, a result of Kamp and Zuckerman [SICOMP 2006] shows that, for any k, some small portion of the entropy in an (n, k)-bit-fixing source can be extracted. Although the extractor does not extract all the entropy, it does extract log(k)/2 bits. In this paper we prove that when the entropy k is small enough compared to n, this exponential entropy-loss is unavoidable. More precisely, we show that forn > Tower(k2) one cannot extract more than log(k)/2+O(1) bits from (n, k)-bit-fixing sources. The remaining entropy is inaccessible, information theoretically. By the Kamp-Zuckerman construction, this negative result is tight. For small enough k, this strengthens a result by Reshef and Vadhan [RSA 2013], who proved a similar bound for extractors computable by space-bounded streaming algorithms. Our impossibility result also holds for what we call zero-fixing sources. These are bit-fixing sources where the fixed bits are set to 0. We complement our negative result, by giving an explicit construction of an (n, k)-zero-fixing extractor that outputs Ω(k) bits for k ≥ poly log log n. Finally, we give a construction of an (n, k)-bit-fixing extractor, that outputs k − O(1) bits, for entropy k = (1 + o(1)) ・ log log n, with running-time nO((log log n)2). This answers an open problem by Reshef and Vadhan [RSA 2013].
AB - An (n, k)-bit-fixing source is a distribution on n bit strings, that is fixed on n − k of the coordinates, and jointly uniform on the remaining k bits. Explicit constructions of bit-fixing extractors by Gabizon, Raz and Shaltiel [SICOMP 2006] and Rao [CCC 2009], extract (1 − o(1)) ・ k bits for k = poly log n, almost matching the probabilistic argument. Intriguingly, unlike other well-studied sources of randomness, a result of Kamp and Zuckerman [SICOMP 2006] shows that, for any k, some small portion of the entropy in an (n, k)-bit-fixing source can be extracted. Although the extractor does not extract all the entropy, it does extract log(k)/2 bits. In this paper we prove that when the entropy k is small enough compared to n, this exponential entropy-loss is unavoidable. More precisely, we show that forn > Tower(k2) one cannot extract more than log(k)/2+O(1) bits from (n, k)-bit-fixing sources. The remaining entropy is inaccessible, information theoretically. By the Kamp-Zuckerman construction, this negative result is tight. For small enough k, this strengthens a result by Reshef and Vadhan [RSA 2013], who proved a similar bound for extractors computable by space-bounded streaming algorithms. Our impossibility result also holds for what we call zero-fixing sources. These are bit-fixing sources where the fixed bits are set to 0. We complement our negative result, by giving an explicit construction of an (n, k)-zero-fixing extractor that outputs Ω(k) bits for k ≥ poly log log n. Finally, we give a construction of an (n, k)-bit-fixing extractor, that outputs k − O(1) bits, for entropy k = (1 + o(1)) ・ log log n, with running-time nO((log log n)2). This answers an open problem by Reshef and Vadhan [RSA 2013].
UR - http://www.scopus.com/inward/record.url?scp=84950159120&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84950159120&partnerID=8YFLogxK
U2 - 10.1007/978-3-662-47672-7_28
DO - 10.1007/978-3-662-47672-7_28
M3 - Conference contribution
AN - SCOPUS:84950159120
SN - 9783662476710
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 343
EP - 354
BT - Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Proceedings
A2 - Halldorsson, Magnus M.
A2 - Kobayashi, Naoki
A2 - Speckmann, Bettina
A2 - Iwama, Kazuo
PB - Springer Verlag
T2 - 42nd International Colloquium on Automata, Languages and Programming, ICALP 2015
Y2 - 6 July 2015 through 10 July 2015
ER -