TY - JOUR
T1 - X-Ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies
AU - Baldassare, Vivienne F.
AU - Reines, Amy E.
AU - Gallo, Elena
AU - Greene, Jenny E.
N1 - Publisher Copyright:
© 2017. The American Astronomical Society. All rights reserved.
PY - 2017/2/10
Y1 - 2017/2/10
N2 - We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies (z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad Hα emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad Hα and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L 0.5-7keV ≈ 5 × 1039 to 1 × 1042 ergs-1. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 104 to 1 × 106 M o), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α OX values an average of 0.36 lower than expected based on the relation between α OX and 2500 luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.
AB - We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies (z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad Hα emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad Hα and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L 0.5-7keV ≈ 5 × 1039 to 1 × 1042 ergs-1. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 104 to 1 × 106 M o), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α OX values an average of 0.36 lower than expected based on the relation between α OX and 2500 luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.
KW - X-rays: galaxies
KW - galaxies: active
KW - galaxies: dwarf
KW - quasars: supermassive black holes
KW - ultraviolet: galaxies
UR - http://www.scopus.com/inward/record.url?scp=85014390094&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014390094&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/836/1/20
DO - 10.3847/1538-4357/836/1/20
M3 - Article
AN - SCOPUS:85014390094
SN - 0004-637X
VL - 836
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 20
ER -