@inproceedings{b6f7841c451c4bcc82a1679bad0444c8,
title = "Wind energy forecast ensembles using a fully-coupled groundwater to atmosphere model",
abstract = "As wind energy becomes an increasingly important component in the renewable energy portfolio, accurate wind forecasts become critical. We apply the PF.WRF model, a fully-coupled groundwater-to-atmosphere model incorporating the parallel three-dimensional variably-saturated hydrologic model ParFlow and the Weather Research and Forecasting (WRF) atmospheric model to simulate the components of the hydrologic cycle from bedrock to the top of the atmosphere. Model components are coupled via moisture and energy fluxes in the Noah Land Surface Model. The fully-coupled model dynamically simulates important meteorological effects of interactions between the land surface and the atmosphere, controlled in part by soil moisture distribution and land surface energy flux partitioning. In this study, we complete ensemble simulations for three wind ramping events at a wind energy production site on the west coast of North America using varying stochastic random fields of subsurface hydraulic conductivity and forced with meteorological data from the North American Regional Reanalysis dataset for a series of wind ramp events. We attribute error between the modelled and observed data to uncertainty in the statistical representation of subsurface heterogeneity and errors in boundary condition forcing data.",
keywords = "Heterogeneity, Land-surface atmosphere feedbacks, Uncertainty, Weather forecasting, Wind, Wind energy",
author = "Williams, {John L.} and Maxwell, {Reed M.}",
note = "Copyright: Copyright 2013 Elsevier B.V., All rights reserved.; 8th International Conference on Calibration and Reliability in Groundwater Modeling - Repositories of Knowledge, ModelCARE 2011 ; Conference date: 18-09-2011 Through 22-09-2011",
year = "2012",
language = "English (US)",
isbn = "9781907161346",
series = "IAHS-AISH Publication",
pages = "327--332",
booktitle = "Models - Repositories of Knowledge",
}