Abstract
The ground state of translationally invariant insulators comprises bands which can assume topologically distinct structures. There are few known examples where this distinction is enforced by a point-group symmetry alone. In this paper we show that 1D and 2D insulators with the simplest point-group symmetry, inversion, have a Z≥ classification. In 2D, we identify a relative winding number that is solely protected by inversion symmetry. By analysis of Berry phases, we show that this invariant has similarities with the first Chern class (of time-reversal breaking insulators), but is more closely analogous to the Z2 invariant (of time-reversal invariant insulators). Implications of our work are discussed in holonomy, the geometric-phase theory of polarization, the theory of maximally localized Wannier functions, and in the entanglement spectrum.
Original language | English (US) |
---|---|
Article number | 155114 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 89 |
Issue number | 15 |
DOIs | |
State | Published - Apr 11 2014 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics