What Is the Role of Pyridinium in Pyridine-Catalyzed CO2 Reduction on p-GaP Photocathodes?

Martina Lessio, Emily A. Carter

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

Experimental evidence suggests that pyridinium plays an important role in photocatalytic CO2 reduction on p-GaP photoelectrodes. Pyridinium reduction to pyridinyl has been previously proposed as an essential mechanistic step for this reaction. However, theoretical calculations suggest that this step is not feasible in solution. Here, cluster models and accurate periodic boundary condition calculations are used to determine whether such a reduction step could occur by transfer of photoexcited electrons from the p-GaP photocathode and whether this transfer could be catalyzed by pyridinium adsorption on the p-GaP surface. It is found that both the transfer of photoexcited electrons to pyridinium and pyridinium adsorption are not energetically favored, thus making very unlikely pyridinium reduction to the pyridinyl radical and the proposed mechanisms requiring this reduction step. Given this conclusion, an alternative and energetically viable pathway for pyridinium reduction on p-GaP photoelectrodes is proposed. This pathway leads to the formation of adsorbed species that could react to form adsorbed dihydropyridine, which was proposed previously to play the role of the active catalyst in this system.

Original languageEnglish (US)
Pages (from-to)13248-13251
Number of pages4
JournalJournal of the American Chemical Society
Volume137
Issue number41
DOIs
StatePublished - Oct 21 2015

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'What Is the Role of Pyridinium in Pyridine-Catalyzed CO2 Reduction on p-GaP Photocathodes?'. Together they form a unique fingerprint.

Cite this