TY - GEN
T1 - What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?
AU - Jin, Chi
AU - Netrapalli, Praneeth
AU - Jordan, Michael I.
N1 - Publisher Copyright:
© 2020 by the Authors.
PY - 2020
Y1 - 2020
N2 - Minimax optimization has found extensive applications in modern machine learning, in settings such as generative adversarial networks (GANs), adversarial training and multi-Agent reinforcement learning. As most of these applications involve continuous nonconvex-nonconcave formulations, a very basic question arises-"what is a proper definition of local optima?" Most previous work answers this question using classical notions of equilibria from simultaneous games, where the min-player and the max-player act simultaneously. In contrast, most applications in machine learning, including GANs and adversarial training, correspond to sequential games, where the order of which player acts first is crucial (since minimax is in general not equal to maximin due to the nonconvex-nonconcave nature of the problems). The main contribution of this paper is to propose a proper mathematical definition of local optimality for this sequential setting-local minimax, as well as to present its properties and existence results. Finally, we establish a strong connection to a basic local search algorithm-gradient descent ascent (GDA): under mild conditions, all stable limit points of GDA are exactly local minimax points up to some degenerate points.
AB - Minimax optimization has found extensive applications in modern machine learning, in settings such as generative adversarial networks (GANs), adversarial training and multi-Agent reinforcement learning. As most of these applications involve continuous nonconvex-nonconcave formulations, a very basic question arises-"what is a proper definition of local optima?" Most previous work answers this question using classical notions of equilibria from simultaneous games, where the min-player and the max-player act simultaneously. In contrast, most applications in machine learning, including GANs and adversarial training, correspond to sequential games, where the order of which player acts first is crucial (since minimax is in general not equal to maximin due to the nonconvex-nonconcave nature of the problems). The main contribution of this paper is to propose a proper mathematical definition of local optimality for this sequential setting-local minimax, as well as to present its properties and existence results. Finally, we establish a strong connection to a basic local search algorithm-gradient descent ascent (GDA): under mild conditions, all stable limit points of GDA are exactly local minimax points up to some degenerate points.
UR - http://www.scopus.com/inward/record.url?scp=85105229998&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105229998&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85105229998
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 4830
EP - 4839
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
PB - International Machine Learning Society (IMLS)
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -