What can casual walkers tell us about a 3D scene?

Diego Rother, Kedar A. Patwardhan, Guillermo Sapiro

Research output: Contribution to conferencePaperpeer-review

18 Scopus citations

Abstract

An approach for incremental learning of a 3D scene from a single static video camera is presented in this paper. In particular, we exploit the presence of casual people walking in the scene to infer relative depth, learn shadows, and segment the critical ground structure. Considering that this type of video data is so ubiquitous, this work provides an important step towards 3D scene analysis from single cameras in readily available ordinary videos and movies. On-line 3D scene learning, as presented here, is very important for applications such as scene analysis, foreground refinement, tracking, biometrics, automated camera collaboration, activity analysis, identification, and real-time computer-graphics applications. The main contributions of this work are then two-fold. First, we use the people in the scene to continuously learn and update the 3D scene parameters using an incremental robust (L1) error minimization. Secondly, models of shadows in the scene are learned using a statistical framework. A symbiotic relationship between the shadow model and the estimated scene geometry is exploited towards incremental mutual improvement. We illustrate the effectiveness of the proposed framework with applications in foreground refinement, automatic segmentation as well as relative depth mapping of the floor/ground, and estimation of 3D trajectories of people in the scene.

Original languageEnglish (US)
DOIs
StatePublished - 2007
Externally publishedYes
Event2007 IEEE 11th International Conference on Computer Vision, ICCV - Rio de Janeiro, Brazil
Duration: Oct 14 2007Oct 21 2007

Other

Other2007 IEEE 11th International Conference on Computer Vision, ICCV
Country/TerritoryBrazil
CityRio de Janeiro
Period10/14/0710/21/07

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'What can casual walkers tell us about a 3D scene?'. Together they form a unique fingerprint.

Cite this