TY - JOUR
T1 - Weyl Semimetal to Metal Phase Transitions Driven by Quasiperiodic Potentials
AU - Pixley, J. H.
AU - Wilson, Justin H.
AU - Huse, David A.
AU - Gopalakrishnan, Sarang
N1 - Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/5/18
Y1 - 2018/5/18
N2 - We explore the stability of three-dimensional Weyl and Dirac semimetals subject to quasiperiodic potentials. We present numerical evidence that the semimetal is stable for weak quasiperiodic potentials, despite being unstable for weak random potentials. As the quasiperiodic potential strength increases, the semimetal transitions to a metal, then to an "inverted" semimetal, and then finally to a metal again. The semimetal and metal are distinguished by the density of states at the Weyl point, as well as by level statistics, transport, and the momentum-space structure of eigenstates near the Weyl point. The critical properties of the transitions in quasiperiodic systems differ from those in random systems: we do not find a clear critical scaling regime in energy; instead, at the quasiperiodic transitions, the density of states appears to jump abruptly (and discontinuously to within our resolution).
AB - We explore the stability of three-dimensional Weyl and Dirac semimetals subject to quasiperiodic potentials. We present numerical evidence that the semimetal is stable for weak quasiperiodic potentials, despite being unstable for weak random potentials. As the quasiperiodic potential strength increases, the semimetal transitions to a metal, then to an "inverted" semimetal, and then finally to a metal again. The semimetal and metal are distinguished by the density of states at the Weyl point, as well as by level statistics, transport, and the momentum-space structure of eigenstates near the Weyl point. The critical properties of the transitions in quasiperiodic systems differ from those in random systems: we do not find a clear critical scaling regime in energy; instead, at the quasiperiodic transitions, the density of states appears to jump abruptly (and discontinuously to within our resolution).
UR - http://www.scopus.com/inward/record.url?scp=85047199669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047199669&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.120.207604
DO - 10.1103/PhysRevLett.120.207604
M3 - Article
C2 - 29864319
AN - SCOPUS:85047199669
SN - 0031-9007
VL - 120
JO - Physical review letters
JF - Physical review letters
IS - 20
M1 - 207604
ER -