Visual concept learning: Combining machine vision and Bayesian generalization on concept hierarchies

Yangqing Jia, Joshua Abbott, Joseph Austerweil, Thomas Griffiths, Trevor Darrell

Research output: Contribution to journalConference article

28 Scopus citations

Abstract

Learning a visual concept from a small number of positive examples is a significant challenge for machine learning algorithms. Current methods typically fail to find the appropriate level of generalization in a concept hierarchy for a given set of visual examples. Recent work in cognitive science on Bayesian models of generalization addresses this challenge, but prior results assumed that objects were perfectly recognized. We present an algorithm for learning visual concepts directly from images, using probabilistic predictions generated by visual classifiers as the input to a Bayesian generalization model. As no existing challenge data tests this paradigm, we collect and make available a new, large-scale dataset for visual concept learning using the ImageNet hierarchy as the source of possible concepts, with human annotators to provide ground truth labels as to whether a new image is an instance of each concept using a paradigm similar to that used in experiments studying word learning in children. We compare the performance of our system to several baseline algorithms, and show a significant advantage results from combining visual classifiers with the ability to identify an appropriate level of abstraction using Bayesian generalization.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
StatePublished - Jan 1 2013
Externally publishedYes
Event27th Annual Conference on Neural Information Processing Systems, NIPS 2013 - Lake Tahoe, NV, United States
Duration: Dec 5 2013Dec 10 2013

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Visual concept learning: Combining machine vision and Bayesian generalization on concept hierarchies'. Together they form a unique fingerprint.

  • Cite this