Abstract
Broad-band pump-probe spectroscopy combined with global and target analysis is employed to study the vibronic and excitonic dynamics of two dimers and a tetramer of perylenediimides. A simultaneous analysis is developed for two systems that have been measured in the same conditions. This enhances the resolvability of the vibronic and excitonic dynamics of the systems, and the solvent contributions that are common in the experiments. We resolve two oscillations of 1399 cm-1 or 311 cm-1 damped with ≈30/ps involved in vibrational relaxation and two more oscillations of 537 cm-1 or 136 cm-1 damped with ≈3/ps. A relaxation process with a rate of 2.1/ps-3.2/ps that is positively correlated with the excitonic coupling was discovered in all three model systems, attributed to annihilation of the one but lowest exciton state.
Original language | English (US) |
---|---|
Article number | 224101 |
Journal | Journal of Chemical Physics |
Volume | 153 |
Issue number | 22 |
DOIs | |
State | Published - Dec 14 2020 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy
- Physical and Theoretical Chemistry