Vector (self) snakes: A geometric framework for color, texture, and multiscale image segmentation

Research output: Contribution to conferencePaperpeer-review

63 Scopus citations

Abstract

A partial-differential-equations (PDE') based geometric framework for segmentation of vector-valued images is described in this paper. The first component of this approach is based on two dimensional geometric active contours deforming from their initial position towards objects in the image. The boundaries of these objects are then obtained as geodesics or minimal weighted distance curves in a Riemannian space. The metric in this space is given by a definition of edges in vector-valued images, incorporating information from all the image components. The curve flow corresponding to these active contours holds formal existence, uniqueness, stability, and correctness results. Then, embedding the deforming curve as the level-set of the image, that is, deforming each one of the image components level-sets according to these active contours, a system of coupled PDE's is obtained. This system deforms the image towards uniform regions, obtaining a simplified (or segmented) image. The flow is related to a number of PDE's based image processing algorithms as anisotropic diffusion and shock filters. The technique is applicable to color and texture images, as well as to vector data obtained from general image decompositions.

Original languageEnglish (US)
Pages817-820
Number of pages4
StatePublished - 1996
Externally publishedYes
EventProceedings of the 1996 IEEE International Conference on Image Processing, ICIP'96. Part 2 (of 3) - Lausanne, Switz
Duration: Sep 16 1996Sep 19 1996

Other

OtherProceedings of the 1996 IEEE International Conference on Image Processing, ICIP'96. Part 2 (of 3)
CityLausanne, Switz
Period9/16/969/19/96

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Vector (self) snakes: A geometric framework for color, texture, and multiscale image segmentation'. Together they form a unique fingerprint.

Cite this