Variable-length compression allowing errors

Victoria Kostina, Yury Polyanskiy, Sergio Verdu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations


This paper studies the fundamental limits of the minimum average length of variable-length compression when a nonzero error probability ε is tolerated. We give non-asymptotic bounds on the minimum average length in terms of Erokhin's rate-distortion function and we use those bounds to obtain a Gaussian approximation on the speed of approach to the limit which is quite accurate for all but small blocklengths: equation where Q-1 (·) is the functional inverse of the Q-function and V (S) is the source dispersion. A nonzero error probability thus not only reduces the asymptotically achievable rate by a factor of 1-ε, but also this asymptotic limit is approached from below, i.e. a larger source dispersion and shorter blocklengths are beneficial. Further, we show that variable-length lossy compression under excess distortion constraint also exhibits similar properties.

Original languageEnglish (US)
Title of host publication2014 IEEE International Symposium on Information Theory, ISIT 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages5
ISBN (Print)9781479951864
StatePublished - 2014
Event2014 IEEE International Symposium on Information Theory, ISIT 2014 - Honolulu, HI, United States
Duration: Jun 29 2014Jul 4 2014

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095


Other2014 IEEE International Symposium on Information Theory, ISIT 2014
Country/TerritoryUnited States
CityHonolulu, HI

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics


Dive into the research topics of 'Variable-length compression allowing errors'. Together they form a unique fingerprint.

Cite this