Abstract
We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2-10. Recent observations suggest that this galaxy hosts an actively accreting black hole (BH) with mass ∼106 . The presence of an active galactic nucleus (AGN) in a low-mass starburst galaxy marks a new environment for AGNs, with implications for the processes by which "seed" BHs may form in the early universe. In this paper, we analyze four epochs of X-ray observations of Henize 2-10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on a detailed analysis of the source and background, we find that the hard (2-10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs.
Original language | English (US) |
---|---|
Article number | 37 |
Journal | Astrophysical Journal |
Volume | 806 |
Issue number | 1 |
DOIs | |
State | Published - Jun 10 2015 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- X-rays: galaxies
- galaxies: active
- galaxies: dwarf
- galaxies: evolution
- galaxies: individual (Henize 210)