Variability and predictability in tactile sensing during grasping

Qian Wan, Ryan P. Adams, Robert D. Howe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

Robotic manipulation in unstructured environments requires grasping a wide range of objects. Tactile sensing is presumed to provide essential information in this context, but there has been little work examining the tactile sensor signals produced during realistic manipulation tasks. This paper presents tactile sensor data from grasping a generic object in thousands of trials. Position error between the hand and object was varied to model the uncertainty in real-world grasping, and a grasp outcome prediction was done using only tactile sensors. Results show that tactile signals are highly variable despite good repeatability in grasping conditions. The observed variability appears to be intrinsic to the grasping process, due to the mechanical coupling between fingers as they contact the object in parallel, as well as numerous factors such as frictional effects and inaccuracies in the robot hand. Using a simple machine learning algorithm, grasp outcome prediction based purely on tactile sensors is not reliable enough for real-world responsibilities. These results have implications for improved tactile sensor system and controller design, as well as signal processing and machine learning methods.

Original languageEnglish (US)
Title of host publication2016 IEEE International Conference on Robotics and Automation, ICRA 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages158-164
Number of pages7
ISBN (Electronic)9781467380263
DOIs
StatePublished - Jun 8 2016
Externally publishedYes
Event2016 IEEE International Conference on Robotics and Automation, ICRA 2016 - Stockholm, Sweden
Duration: May 16 2016May 21 2016

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2016-June
ISSN (Print)1050-4729

Other

Other2016 IEEE International Conference on Robotics and Automation, ICRA 2016
CountrySweden
CityStockholm
Period5/16/165/21/16

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Variability and predictability in tactile sensing during grasping'. Together they form a unique fingerprint.

  • Cite this

    Wan, Q., Adams, R. P., & Howe, R. D. (2016). Variability and predictability in tactile sensing during grasping. In 2016 IEEE International Conference on Robotics and Automation, ICRA 2016 (pp. 158-164). [7487129] (Proceedings - IEEE International Conference on Robotics and Automation; Vol. 2016-June). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICRA.2016.7487129