Valley-splitting and valley-dependent inter-Landau-level optical transitions in monolayer MoS2 quantum Hall systems

Rui Lin Chu, Xiao Li, Sanfeng Wu, Qian Niu, Wang Yao, Xiaodong Xu, Chuanwei Zhang

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

The valley-dependent optical selection rules in recently discovered monolayer group-VI transition-metal dichalcogenides (TMDs) make possible optical control of valley polarization, a crucial step towards valleytronic applications. However, in the presence of Landau-level (LL) quantization such selection rules are taken over by selection rules between the LLs, which are not necessarily valley contrasting. Using MoS2 as an example we show that the spatial inversion-symmetry breaking results in unusual valley-dependent inter-LL selection rules, which is controlled by the sign of the magnetic field and directly locks polarization to valley. We find a systematic valley splitting for all LLs in the quantum Hall regime, whose magnitude is linearly proportional to the magnetic field and is comparable with the LL spacing. Consequently, unique plateau structures are found in the optical Hall conductivity, which can be measured by the magneto-optical Faraday rotations.

Original languageEnglish (US)
Article number045427
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume90
Issue number4
DOIs
StatePublished - Jul 29 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Valley-splitting and valley-dependent inter-Landau-level optical transitions in monolayer MoS2 quantum Hall systems'. Together they form a unique fingerprint.

Cite this