Abstract
The valley-dependent optical selection rules in recently discovered monolayer group-VI transition-metal dichalcogenides (TMDs) make possible optical control of valley polarization, a crucial step towards valleytronic applications. However, in the presence of Landau-level (LL) quantization such selection rules are taken over by selection rules between the LLs, which are not necessarily valley contrasting. Using MoS2 as an example we show that the spatial inversion-symmetry breaking results in unusual valley-dependent inter-LL selection rules, which is controlled by the sign of the magnetic field and directly locks polarization to valley. We find a systematic valley splitting for all LLs in the quantum Hall regime, whose magnitude is linearly proportional to the magnetic field and is comparable with the LL spacing. Consequently, unique plateau structures are found in the optical Hall conductivity, which can be measured by the magneto-optical Faraday rotations.
Original language | English (US) |
---|---|
Article number | 045427 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 90 |
Issue number | 4 |
DOIs | |
State | Published - Jul 29 2014 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics