Validation of data-driven computational models of social perception of faces

Alexander Todorov, Ron Dotsch, Jenny M. Porter, Nikolaas N. Oosterhof, Virginia B. Falvello

Research output: Contribution to journalArticlepeer-review

165 Scopus citations


People rapidly form impressions from facial appearance, and these impressions affect social decisions. We argue that data-driven, computational models are the best available tools for identifying the source of such impressions. Here we validate seven computational models of social judgments of faces: attractiveness, competence, dominance, extroversion, likability, threat, and trustworthiness. The models manipulate both face shape and reflectance (i.e., cues such as pigmentation and skin smoothness). We show that human judgments track the models' predictions (Experiment 1) and that the models differentiate between different judgments, though this differentiation is constrained by the similarity of the models (Experiment 2). We also make the validated stimuli available for academic research: seven databases containing 25 identities manipulated in the respective model to take on seven different dimension values, ranging from -3 SD to +3 SD (175 stimuli in each database). Finally, we show how the computational models can be used to control for shared variance of the models. For example, even for highly correlated dimensions (e.g., dominance and threat), we can identify cues specific to each dimension and, consequently, generate faces that vary only on these cues.

Original languageEnglish (US)
Pages (from-to)724-738
Number of pages15
Issue number4
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • General Psychology


  • Affect
  • Computational models
  • Evaluation
  • Face perception
  • Social perception


Dive into the research topics of 'Validation of data-driven computational models of social perception of faces'. Together they form a unique fingerprint.

Cite this