Abstract
Charged and neutral vacancies and vacancy-mediated self-diffusion in ?-Cr2O3 were investigated using first-principles density functional theory (DFT) and periodic supercell formalism. The vacancy formation energies of charged defects were calculated using the electrostatic finite-size corrections to account for electrostatic interactions between supercells and the corrections for the bandgap underestimation in DFT. Calculations predict that neutral oxygen (O) vacancies are predominant in chromium (Cr)-rich conditions and Cr vacancies with ?2 charge state are the dominant defects in O-rich conditions. The charge-transition levels of both O and Cr vacancies are deep within the bandgap, indicating the stability of these defects. Transport calculations indicate that vacancy-mediated diffusion along the basal plane has lower energy barriers for both O and Cr ions. The most favorable vacancy-mediated self-diffusion processes corresponds to the diffusion of Cr ion in Cr3+ charge state and O ion in O2? state, respectively. Our calculations reveal that Cr triple defects composed of Cr in octahedral interstitial sites with two adjacent Cr vacancies along the c axis have a lower formation energy compared with that of charged Cr vacancies. The formation of such triple defects facilitates Cr self-diffusion along the c axis.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 1817-1831 |
| Number of pages | 15 |
| Journal | Journal of Physical Chemistry C |
| Volume | 121 |
| Issue number | 3 |
| DOIs | |
| State | Published - Jan 26 2017 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films