Uranium reduction and microbial community development in response to stimulation with different electron donors

Melissa Barlett, Hee Sun Moon, Aaron A. Peacock, David B. Hedrick, Kenneth H. Williams, Philip E. Long, Derek Lovley, Peter R. Jaffe

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.

Original languageEnglish (US)
Pages (from-to)535-546
Number of pages12
Issue number4
StatePublished - Jul 2012

All Science Journal Classification (ASJC) codes

  • Pollution
  • Bioengineering
  • Environmental Engineering
  • Microbiology
  • Environmental Chemistry


  • Electron donors
  • Microbial community structure
  • Subsurface
  • Uranium reduction


Dive into the research topics of 'Uranium reduction and microbial community development in response to stimulation with different electron donors'. Together they form a unique fingerprint.

Cite this