Upsetting the contingency table: Causal induction over sequences of point events

Michael D. Pacer, Thomas L. Griffiths

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Data continuously stream into our minds, guiding our learning and inference with no trial delimiters to parse our experience. These data can take on a variety of forms, but research on causal learning has emphasized discrete contingency data over continuous sequences of events. We present a formal framework for modeling causal inferences about sequences of point events, based on Bayesian inference over nonhomogeneous Poisson processes (NHPPs). We show how to apply this framework to successfully model data from an experiment by Lagnado and Speekenbrink (2010) which examined human learning from sequences of point events.

Original languageEnglish (US)
Title of host publicationProceedings of the 37th Annual Meeting of the Cognitive Science Society, CogSci 2015
EditorsDavid C. Noelle, Rick Dale, Anne Warlaumont, Jeff Yoshimi, Teenie Matlock, Carolyn D. Jennings, Paul P. Maglio
PublisherThe Cognitive Science Society
Pages1805-1810
Number of pages6
ISBN (Electronic)9780991196722
StatePublished - 2015
Externally publishedYes
Event37th Annual Meeting of the Cognitive Science Society: Mind, Technology, and Society, CogSci 2015 - Pasadena, United States
Duration: Jul 23 2015Jul 25 2015

Publication series

NameProceedings of the 37th Annual Meeting of the Cognitive Science Society, CogSci 2015

Conference

Conference37th Annual Meeting of the Cognitive Science Society: Mind, Technology, and Society, CogSci 2015
Country/TerritoryUnited States
CityPasadena
Period7/23/157/25/15

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Keywords

  • Bayesian models
  • causal inference
  • continuous time
  • stochastic processes

Fingerprint

Dive into the research topics of 'Upsetting the contingency table: Causal induction over sequences of point events'. Together they form a unique fingerprint.

Cite this