Upcycling Poly(vinyl chloride) and Polystyrene Plastics Using Photothermal Conversion

Hanning Jiang, Erik A. Medina, Erin E. Stache

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Poly(vinyl chloride) (PVC) and polystyrene (PS) are among the least recycled plastics. In this work, we developed a simple and novel strategy to valorize PVC and PS plastics via photothermal conversion to (1-chloroethyl)benzene, a commodity chemical with excellent versatility. As PVC is known to release HCl gas and decompose into conjugated polyenes, we envisioned a dual role for PVC plastics. While the in situ-generated HCl serves as a chlorine source, the resulting dehydrochlorinated-PVC (DHPVC) functions as a photothermal agent to accelerate the hydrochlorination of styrene. We converted PVC and styrene in up to 89% (1-chloroethyl)benzene in less than 1 h of white light irradiation. Subsequent nucleophilic substitution on the chloro-adduct formed 1-phenylethanol (a fragrance additive) and fendiline (a heart disease drug) in high yields. The PVC photothermal hydrochlorination system is applied to various alkenes and is compatible with post-consumer waste PVC plastics and plasticizers. Ultimately, PVC upcycling with photothermally recycled styrene achieved 84% (1-chloroethyl)benzene under white LED light in 1 h, and co-upcycling of PS and PVC achieved 42% yield under focused sunlight irradiation in just 4 min.

Original languageEnglish (US)
Pages (from-to)2822-2828
Number of pages7
JournalJournal of the American Chemical Society
Volume147
Issue number3
DOIs
StatePublished - Jan 22 2025

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Upcycling Poly(vinyl chloride) and Polystyrene Plastics Using Photothermal Conversion'. Together they form a unique fingerprint.

Cite this