TY - JOUR
T1 - Universality of the Local Regime for the Block Band Matrices with a Finite Number of Blocks
AU - Shcherbina, Tatyana
N1 - Funding Information:
Acknowledgments Supported by NSF grant DMS 1128155. This research also was partially supported by RF Government grant 11.G34.31.0026 and by JSC “Gazprom Neft”.
PY - 2014/5
Y1 - 2014/5
N2 - We consider the block band matrices, i.e. the Hermitian matrices HN,N={pipe}Λ{pipe}W with elements Hjk,αβ where j,k ∈ Λ =[1,m]d ∩ ℤd (they parameterize the lattice sites) and α β = 1,...., W(they parameterize the orbitals on each site). The entries Hjk,α β are random Gaussian variables with mean zero such that 〈 Hj1k1,α1β1,Hj2k2,α2β2〉 =δj1k2δj2k1δα1β2δβ1α2Jj1k1 where J=1/W+α Δ /W, α < 1/4d. This matrices are the special case of Wegner's W-orbital models. Assuming that the number of sites {pipe}Λ{pipe} is finite, we prove universality of the local eigenvalue statistics of HN for the energies {pipe}λ0{pipe}< √2.
AB - We consider the block band matrices, i.e. the Hermitian matrices HN,N={pipe}Λ{pipe}W with elements Hjk,αβ where j,k ∈ Λ =[1,m]d ∩ ℤd (they parameterize the lattice sites) and α β = 1,...., W(they parameterize the orbitals on each site). The entries Hjk,α β are random Gaussian variables with mean zero such that 〈 Hj1k1,α1β1,Hj2k2,α2β2〉 =δj1k2δj2k1δα1β2δβ1α2Jj1k1 where J=1/W+α Δ /W, α < 1/4d. This matrices are the special case of Wegner's W-orbital models. Assuming that the number of sites {pipe}Λ{pipe} is finite, we prove universality of the local eigenvalue statistics of HN for the energies {pipe}λ0{pipe}< √2.
KW - Band matrices
KW - Random matrices
KW - Universality
KW - Wegner model
UR - http://www.scopus.com/inward/record.url?scp=84898543980&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898543980&partnerID=8YFLogxK
U2 - 10.1007/s10955-014-0964-4
DO - 10.1007/s10955-014-0964-4
M3 - Article
AN - SCOPUS:84898543980
SN - 0022-4715
VL - 155
SP - 466
EP - 499
JO - Journal of Statistical Physics
JF - Journal of Statistical Physics
IS - 3
ER -