UNINTENTIONAL UNALIGNMENT: LIKELIHOOD DISPLACEMENT IN DIRECT PREFERENCE OPTIMIZATION

Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, Boris Hanin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Direct Preference Optimization (DPO) and its variants are increasingly used for aligning language models with human preferences. Although these methods are designed to teach a model to generate preferred responses more frequently relative to dispreferred responses, prior work has observed that the likelihood of preferred responses often decreases during training. The current work sheds light on the causes and implications of this counterintuitive phenomenon, which we term likelihood displacement. We demonstrate that likelihood displacement can be catastrophic, shifting probability mass from preferred responses to responses with an opposite meaning. As a simple example, training a model to prefer No over Never can sharply increase the probability of Yes. Moreover, when aligning the model to refuse unsafe prompts, we show that such displacement can unintentionally lead to unalignment, by shifting probability mass from preferred refusal responses to harmful responses (e.g., reducing the refusal rate of Llama-38B-Instruct from 74.4% to 33.4%). We theoretically characterize that likelihood displacement is driven by preferences that induce similar embeddings, as measured by a centered hidden embedding similarity (CHES) score. Empirically, the CHES score enables identifying which training samples contribute most to likelihood displacement in a given dataset. Filtering out these samples effectively mitigated unintentional unalignment in our experiments. More broadly, our results highlight the importance of curating data with sufficiently distinct preferences, for which we believe the CHES score may prove valuable.

Original languageEnglish (US)
Title of host publication13th International Conference on Learning Representations, ICLR 2025
PublisherInternational Conference on Learning Representations, ICLR
Pages84908-84951
Number of pages44
ISBN (Electronic)9798331320850
StatePublished - 2025
Event13th International Conference on Learning Representations, ICLR 2025 - Singapore, Singapore
Duration: Apr 24 2025Apr 28 2025

Publication series

Name13th International Conference on Learning Representations, ICLR 2025

Conference

Conference13th International Conference on Learning Representations, ICLR 2025
Country/TerritorySingapore
CitySingapore
Period4/24/254/28/25

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'UNINTENTIONAL UNALIGNMENT: LIKELIHOOD DISPLACEMENT IN DIRECT PREFERENCE OPTIMIZATION'. Together they form a unique fingerprint.

Cite this