Unifying Microscopic and Continuum Treatments of van der Waals and Casimir Interactions

Prashanth S. Venkataram, Jan Hermann, Alexandre Tkatchenko, Alejandro W. Rodriguez

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

We present an approach for computing long-range van der Waals (vdW) interactions between complex molecular systems and arbitrarily shaped macroscopic bodies, melding atomistic treatments of electronic fluctuations based on density functional theory in the former with continuum descriptions of strongly shape-dependent electromagnetic fields in the latter, thus capturing many-body and multiple scattering effects to all orders. Such a theory is especially important when considering vdW interactions at mesoscopic scales, i.e., between molecules and structured surfaces with features on the scale of molecular sizes, in which case the finite sizes, complex shapes, and resulting nonlocal electronic excitations of molecules are strongly influenced by electromagnetic retardation and wave effects that depend crucially on the shapes of surrounding macroscopic bodies. We show that these effects together can modify vdW interaction energies and forces, as well as molecular shapes deformed by vdW interactions, by orders of magnitude compared to previous treatments based on Casimir-Polder, nonretarded, or pairwise approximations, which are valid only at macroscopically large or atomic-scale separations or in dilute insulating media, respectively.

Original languageEnglish (US)
Article number266802
JournalPhysical review letters
Volume118
Issue number26
DOIs
StatePublished - Jun 29 2017

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Unifying Microscopic and Continuum Treatments of van der Waals and Casimir Interactions'. Together they form a unique fingerprint.

Cite this