Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing

Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon S. Du, Jason D. Lee

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations


It is believed that Gradient Descent (GD) induces an implicit bias towards good generalization in training machine learning models. This paper provides a fine-grained analysis of the dynamics of GD for the matrix sensing problem, whose goal is to recover a low-rank ground-truth matrix from near-isotropic linear measurements. It is shown that GD with small initialization behaves similarly to the greedy low-rank learning heuristics (Li et al., 2020) and follows an incremental learning procedure (Gissin et al., 2019): GD sequentially learns solutions with increasing ranks until it recovers the ground truth matrix. Compared to existing works which only analyze the first learning phase for rank-1 solutions, our result provides characterizations for the whole learning process. Moreover, besides the over-parameterized regime that many prior works focused on, our analysis of the incremental learning procedure also applies to the under-parameterized regime. Finally, we conduct numerical experiments to confirm our theoretical findings.

Original languageEnglish (US)
Pages (from-to)15200-15238
Number of pages39
JournalProceedings of Machine Learning Research
StatePublished - 2023
Externally publishedYes
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: Jul 23 2023Jul 29 2023

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability


Dive into the research topics of 'Understanding Incremental Learning of Gradient Descent: A Fine-grained Analysis of Matrix Sensing'. Together they form a unique fingerprint.

Cite this