Abstract
It is believed that Gradient Descent (GD) induces an implicit bias towards good generalization in training machine learning models. This paper provides a fine-grained analysis of the dynamics of GD for the matrix sensing problem, whose goal is to recover a low-rank ground-truth matrix from near-isotropic linear measurements. It is shown that GD with small initialization behaves similarly to the greedy low-rank learning heuristics (Li et al., 2020) and follows an incremental learning procedure (Gissin et al., 2019): GD sequentially learns solutions with increasing ranks until it recovers the ground truth matrix. Compared to existing works which only analyze the first learning phase for rank-1 solutions, our result provides characterizations for the whole learning process. Moreover, besides the over-parameterized regime that many prior works focused on, our analysis of the incremental learning procedure also applies to the under-parameterized regime. Finally, we conduct numerical experiments to confirm our theoretical findings.
Original language | English (US) |
---|---|
Pages (from-to) | 15200-15238 |
Number of pages | 39 |
Journal | Proceedings of Machine Learning Research |
Volume | 202 |
State | Published - 2023 |
Externally published | Yes |
Event | 40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States Duration: Jul 23 2023 → Jul 29 2023 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability