TY - GEN
T1 - Uncertainty quantification for cargo hold fires
AU - Degennaro, Anthony M.
AU - Lohry, Mark W.
AU - Martinelli, Luigi
AU - Rowley, Clarence W.
N1 - Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2016
Y1 - 2016
N2 - The purpose of this study is twofold -first, to introduce the application of high-order discontinuous Galerkin methods to buoyancy-driven cargo hold fire simulations; second, to explore statistical variation in the fluid dynamics of a cargo hold fire given parameterized uncertainty in the fire source location and temperature. Cargo hold fires represent a class of problems that require highly-accurate computational methods to simulate faithfully. Hence, we use an in-house discontinuous Galerkin code to treat these flows. Cargo hold fires also exhibit a large amount of uncertainty with respect to the boundary conditions. Thus, the second aim of this paper is to use tools from the uncertainty quantification community to ensure that our efforts require a minimal number of simulations. We expect that the results of this study will provide statistical insight into the effects of fire location and temperature on cargo fires, and also assist in the optimization of fire detection system placement.
AB - The purpose of this study is twofold -first, to introduce the application of high-order discontinuous Galerkin methods to buoyancy-driven cargo hold fire simulations; second, to explore statistical variation in the fluid dynamics of a cargo hold fire given parameterized uncertainty in the fire source location and temperature. Cargo hold fires represent a class of problems that require highly-accurate computational methods to simulate faithfully. Hence, we use an in-house discontinuous Galerkin code to treat these flows. Cargo hold fires also exhibit a large amount of uncertainty with respect to the boundary conditions. Thus, the second aim of this paper is to use tools from the uncertainty quantification community to ensure that our efforts require a minimal number of simulations. We expect that the results of this study will provide statistical insight into the effects of fire location and temperature on cargo fires, and also assist in the optimization of fire detection system placement.
UR - http://www.scopus.com/inward/record.url?scp=85088353144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088353144&partnerID=8YFLogxK
U2 - 10.2514/6.2016-1419
DO - 10.2514/6.2016-1419
M3 - Conference contribution
AN - SCOPUS:85088353144
SN - 9781624103926
T3 - 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
BT - 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2016
Y2 - 4 January 2016 through 8 January 2016
ER -