TY - JOUR
T1 - Ultrathin, high-efficiency, broad-band, omniacceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array
AU - Chou, Stephen Y.
AU - Ding, Wei
PY - 2013/1/14
Y1 - 2013/1/14
N2 - Three of central challenges in solar cells are high light coupling into solar cell, high light trapping and absorption in a sub-absorptionlength- thick active layer, and replacement of the indium-tin-oxide (ITO) transparent electrode used in thin-film devices. Here, we report a proposal and the first experimental study and demonstration of a new ultra-thin highefficiency organic solar cell (SC), termed “plasmonic cavity with subwavelength hole-array (PlaCSH) solar cell”, that offers a solution to all three issues with unprecedented performances. The ultrathin PlaCSH-SC is a thin plasmonic cavity that consists of a 30 nm thick front metal–mesh electrode with subwavelength hole–array (MESH) which replaces ITO, a thin (100 nm thick) back metal electrode, and in-between a polymer photovoltaic active layer (P3HT/PCBM) of 85 nm thick (1/3 average absorption-length). Experimentally, the PlaCSH-SCs have achieved (1) light coupling–efficiency/absorptance as high as 96% (average 90%), broadband, and Omni acceptance (light coupling nearly independent of both light incident angle and polarization); (2) an external quantum efficiency of 69% for only 27% single-pass active layer absorptance; leading to (3) a 4.4% power conversion efficiency (PCE) at standard–solar–irradiation, which is 52% higher than the reference ITO-SC (identical structure and fabrication to PlaCSH-SC except MESH replaced by ITO), and also is among the highest PCE for the material system that was achievable previously only by using thick active materials and/or optimized polymer compositions and treatments. In harvesting scattered light, the Omni acceptance can increase PCE by additional 81% over ITO-SC, leading to a total 175% increase (i.e. 8% PCE). Furthermore, we found that (a) after formation of PlaCSH the light reflection and absorption by MESH are reduced by 2 to 6 fold from the values when it is alone; and (b) the sheet resistance of a 30 nm thick MESH is 2.2 ohm/sq or less–4.5 fold or more lower than the best reported value for a 100 nm thick ITO film, giving a lowest reflectance-sheetresistance product. Finally, fabrication of PlaCSH has used nanoimprint on 4” wafer and is scalable to roll-to-roll manufacturing. The designs, fabrications, and findings are applicable to thin solar cells in other materials.
AB - Three of central challenges in solar cells are high light coupling into solar cell, high light trapping and absorption in a sub-absorptionlength- thick active layer, and replacement of the indium-tin-oxide (ITO) transparent electrode used in thin-film devices. Here, we report a proposal and the first experimental study and demonstration of a new ultra-thin highefficiency organic solar cell (SC), termed “plasmonic cavity with subwavelength hole-array (PlaCSH) solar cell”, that offers a solution to all three issues with unprecedented performances. The ultrathin PlaCSH-SC is a thin plasmonic cavity that consists of a 30 nm thick front metal–mesh electrode with subwavelength hole–array (MESH) which replaces ITO, a thin (100 nm thick) back metal electrode, and in-between a polymer photovoltaic active layer (P3HT/PCBM) of 85 nm thick (1/3 average absorption-length). Experimentally, the PlaCSH-SCs have achieved (1) light coupling–efficiency/absorptance as high as 96% (average 90%), broadband, and Omni acceptance (light coupling nearly independent of both light incident angle and polarization); (2) an external quantum efficiency of 69% for only 27% single-pass active layer absorptance; leading to (3) a 4.4% power conversion efficiency (PCE) at standard–solar–irradiation, which is 52% higher than the reference ITO-SC (identical structure and fabrication to PlaCSH-SC except MESH replaced by ITO), and also is among the highest PCE for the material system that was achievable previously only by using thick active materials and/or optimized polymer compositions and treatments. In harvesting scattered light, the Omni acceptance can increase PCE by additional 81% over ITO-SC, leading to a total 175% increase (i.e. 8% PCE). Furthermore, we found that (a) after formation of PlaCSH the light reflection and absorption by MESH are reduced by 2 to 6 fold from the values when it is alone; and (b) the sheet resistance of a 30 nm thick MESH is 2.2 ohm/sq or less–4.5 fold or more lower than the best reported value for a 100 nm thick ITO film, giving a lowest reflectance-sheetresistance product. Finally, fabrication of PlaCSH has used nanoimprint on 4” wafer and is scalable to roll-to-roll manufacturing. The designs, fabrications, and findings are applicable to thin solar cells in other materials.
UR - http://www.scopus.com/inward/record.url?scp=84872697315&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872697315&partnerID=8YFLogxK
U2 - 10.1364/OE.21.000A60
DO - 10.1364/OE.21.000A60
M3 - Article
C2 - 23389276
AN - SCOPUS:84872697315
SN - 1094-4087
VL - 21
SP - A60-A76
JO - Optics Express
JF - Optics Express
IS - 101
ER -