Ultra-broadband semiconductor laser

Claire Gmachl, Deborah L. Sivco, Raffaele Colombelli, Federico Capasso, Alfred Y. Cho

Research output: Contribution to journalArticlepeer-review

276 Scopus citations


The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum, multi-peaked gain spectra, and the most favoured technique at present, ultrashort pulse excitation. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared 'super-continuum' semiconductor laser that has none of these drawbacks. We adopt a quantum cascade configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8 μm wavelength. Laser action with a Fabry-Pérot spectrum covering all wavelengths from 6 to 8 μm simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications or ultra-precision metrology and spectroscopy.

Original languageEnglish (US)
Pages (from-to)883-887
Number of pages5
Issue number6874
StatePublished - Feb 21 2002
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Ultra-broadband semiconductor laser'. Together they form a unique fingerprint.

Cite this