Two-Dimensional core-collapse supernova models with multi-dimensional transport

Joshua C. Dolence, Adam S. Burrows, Weiqun Zhang

Research output: Contribution to journalArticlepeer-review

89 Scopus citations


We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying "ray-by-ray" approach employed by all other groups may be compromising their results. We show that "ray-by-ray" calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion.

Original languageEnglish (US)
Article number10
JournalAstrophysical Journal Letters
Issue number1
StatePublished - Feb 10 2015

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


  • hydrodynamics
  • neutrinos
  • stars: interiors
  • supernovae: general


Dive into the research topics of 'Two-Dimensional core-collapse supernova models with multi-dimensional transport'. Together they form a unique fingerprint.

Cite this