Turbulence and heat transfer measurements in an inclined large scale film cooling array - Part I, velocity and turbulence measurements

Lamyaa A. El-Gabry, Douglas R. Thurman, Philip E. Poinsatte, James D. Heidmann

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Scopus citations

Abstract

A large-scale model of an inclined row of film cooling holes is used to obtain detailed surface and flow field measurements that will enable future computational fluid dynamics code development and validation. The model consists of three holes of 1.9-cm diameter that are spaced 3 hole diameters apart and inclined 30° from the surface. The length to diameter ratio of the coolant holes is about 18. Measurements include film effectiveness using IR thermography and near wall thermocouples, heat transfer using liquid crystal thermography, flow field temperatures using a thermocouple, and velocity and turbulence quantities using hotwire anemometry. Results are obtained for blowing ratios of up to 2 in order to capture severe conditions in which the jet is lifted. This first part of the two-part paper presents the detailed velocity component and turbulence stresses along the centerline of the film-cooling hole and at various streamwise locations.

Original languageEnglish (US)
Title of host publicationASME 2011 Turbo Expo
Subtitle of host publicationTurbine Technical Conference and Exposition, GT2011
Pages541-550
Number of pages10
EditionPARTS A AND B
DOIs
StatePublished - 2011
EventASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011 - Vancouver, BC, Canada
Duration: Jun 6 2011Jun 10 2011

Publication series

NameProceedings of the ASME Turbo Expo
NumberPARTS A AND B
Volume5

Conference

ConferenceASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011
Country/TerritoryCanada
CityVancouver, BC
Period6/6/116/10/11

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Turbulence and heat transfer measurements in an inclined large scale film cooling array - Part I, velocity and turbulence measurements'. Together they form a unique fingerprint.

Cite this