Abstract
Aqueous zinc batteries are recognized to suffer from H+/Zn2+ coinsertion in the cathode, but few approaches have been reported to suppress deleterious H+ intercalation. Herein, we realize this goal by tuning the solvation structure, using LiV2(PO4)3 (LVP) as a model cathode. Phase conversion of LVP induced by H+ intercalation is observed in 4 m Zn(OTf)2, whereas dominant Zn2+ insertion is confirmed in a ZnCl2 water-in-salt electrolyte (WiSE). This disparity is ascribed to the complete absence of free water and a strong Zn2+–H2O interaction in the latter that interrupts the H2O hydrogen bonding network, thus suppressing H+ intercalation. On the basis of this strategy, a novel PEG-based hybrid electrolyte is designed to replace the corrosive ZnCl2 WiSE. This system exhibits an optimized Zn2+ solvation sheath with a similar low free water content, showing not only much better suppression of H+ intercalation but also highly reversible Zn plating/stripping with a CE of ∼99.7% over 150 cycles.
Original language | English (US) |
---|---|
Pages (from-to) | 533-540 |
Number of pages | 8 |
Journal | ACS Energy Letters |
Volume | 7 |
Issue number | 1 |
DOIs | |
State | Published - Jan 14 2022 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Chemistry (miscellaneous)
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Materials Chemistry