TY - JOUR
T1 - Tuning Morphologies and Reactivities of Hybrid Organic-Inorganic Nanoparticles
AU - Schneider, Joanna
AU - Liu, Jason X.
AU - Lee, Victoria E.
AU - Prud'Homme, Robert K.
AU - Datta, Sujit S.
AU - Priestley, Rodney D.
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/10/25
Y1 - 2022/10/25
N2 - Hybrid nanoparticles (hNPs), or nanoparticles composed of both organic and inorganic components, hold promise for diverse energy and environmental applications due to their ability to stabilize reactive nanomaterials against aggregation, enhancing their ability to pervade tortuous spaces and travel long distances to degrade contaminants in situ. Past studies have investigated the use of polymer or surfactant coatings to stabilize nanomaterials against aggregation. However, fabrication of these materials often requires multiple steps and lacks specificity in the control of their morphologies and reactivities. Here, we demonstrated a method of producing stable hNPs with tunable morphologies by incubating polystyrene nanoparticles formed via Flash NanoPrecipitation with citrate-stabilized gold nanocatalysts. Using this simple fabrication technique, we found that gold adsorption to polystyrene nanoparticles was enabled by the presence of a good solvent for polystyrene. Furthermore, changing process parameters, such as gold incubation time, and molecular parameters, such as polymer molecular weight and end-group functionality, provided control over the resultant nanocatalyst loading and dispersal atop hNPs. We classified these morphologies into three distinct regimes-aggregated, dispersed, or internalized-and we showed that the emergence of these regimes has key implications for controlling reaction rates in applications such as heterogeneous catalysis or groundwater remediation. Specifically, we found that hNPs with gold nanocatalysts embedded below the surfaces of polystyrene nanoparticles exhibited slower bulk catalytic reduction capacity than their disperse, surface-decorated counterparts. Taken together, our work demonstrates a simple way by which hNPs can be fabricated and presents a method to control catalytic reactions using reactive nanomaterials.
AB - Hybrid nanoparticles (hNPs), or nanoparticles composed of both organic and inorganic components, hold promise for diverse energy and environmental applications due to their ability to stabilize reactive nanomaterials against aggregation, enhancing their ability to pervade tortuous spaces and travel long distances to degrade contaminants in situ. Past studies have investigated the use of polymer or surfactant coatings to stabilize nanomaterials against aggregation. However, fabrication of these materials often requires multiple steps and lacks specificity in the control of their morphologies and reactivities. Here, we demonstrated a method of producing stable hNPs with tunable morphologies by incubating polystyrene nanoparticles formed via Flash NanoPrecipitation with citrate-stabilized gold nanocatalysts. Using this simple fabrication technique, we found that gold adsorption to polystyrene nanoparticles was enabled by the presence of a good solvent for polystyrene. Furthermore, changing process parameters, such as gold incubation time, and molecular parameters, such as polymer molecular weight and end-group functionality, provided control over the resultant nanocatalyst loading and dispersal atop hNPs. We classified these morphologies into three distinct regimes-aggregated, dispersed, or internalized-and we showed that the emergence of these regimes has key implications for controlling reaction rates in applications such as heterogeneous catalysis or groundwater remediation. Specifically, we found that hNPs with gold nanocatalysts embedded below the surfaces of polystyrene nanoparticles exhibited slower bulk catalytic reduction capacity than their disperse, surface-decorated counterparts. Taken together, our work demonstrates a simple way by which hNPs can be fabricated and presents a method to control catalytic reactions using reactive nanomaterials.
KW - adsorption
KW - aggregation
KW - dispersal
KW - hybrid nanoparticle
KW - internalization
KW - nanocatalyst
UR - http://www.scopus.com/inward/record.url?scp=85139834859&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139834859&partnerID=8YFLogxK
U2 - 10.1021/acsnano.2c04585
DO - 10.1021/acsnano.2c04585
M3 - Article
C2 - 36223069
AN - SCOPUS:85139834859
SN - 1936-0851
VL - 16
SP - 16133
EP - 16142
JO - ACS Nano
JF - ACS Nano
IS - 10
ER -