Abstract
The fluxonium qubit is a promising candidate for quantum computation due to its long coherence times and large anharmonicity. We present a tunable coupler that realizes strong inductive coupling between two heavy-fluxonium qubits, each with approximately 50-MHz frequencies and approximately 5-GHz anharmonicities. The coupler enables the qubits to have a large tuning range of XX coupling strengths (-35 to 75 MHz). The ZZ coupling strength is <3 kHz across the entire coupler bias range and <100 Hz at the coupler off position. These qualities lead to fast high-fidelity single- and two-qubit gates. By driving at the difference frequency of the two qubits, we realize a iSWAP gate in 258 ns with fidelity 99.72%, and by driving at the sum frequency of the two qubits, we achieve a bSWAP gate in 102 ns with fidelity 99.91%. This latter gate is only five qubit Larmor periods in length. We run cross-entropy benchmarking for over 20 consecutive hours and measure stable gate fidelities, with bSWAP drift (2σ) <0.02% and iSWAP drift <0.08%.
Original language | English (US) |
---|---|
Article number | 020326 |
Journal | PRX Quantum |
Volume | 5 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2024 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Computer Science
- Mathematical Physics
- General Physics and Astronomy
- Applied Mathematics
- Electrical and Electronic Engineering