Tree of Thoughts: Deliberate Problem Solving with Large Language Models

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, Karthik Narasimhan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

491 Scopus citations

Abstract

Language models are increasingly being deployed for general problem solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, “Tree of Thoughts” (ToT), which generalizes over the popular “Chain of Thought” approach to prompting language models, and enables exploration over coherent units of text (“thoughts”) that serve as intermediate steps toward problem solving. ToT allows LMs to perform deliberate decision making by considering multiple different reasoning paths and self-evaluating choices to decide the next course of action, as well as looking ahead or backtracking when necessary to make global choices. Our experiments show that ToT significantly enhances language models' problem-solving abilities on three novel tasks requiring non-trivial planning or search: Game of 24, Creative Writing, and Mini Crosswords. For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only solved 4% of tasks, our method achieved a success rate of 74%. Code repo with all prompts: https://github.com/princeton-nlp/tree-of-thought-llm.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
EditorsA. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713899921
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

Publication series

NameAdvances in Neural Information Processing Systems
Volume36
ISSN (Print)1049-5258

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period12/10/2312/16/23

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Tree of Thoughts: Deliberate Problem Solving with Large Language Models'. Together they form a unique fingerprint.

Cite this