TY - JOUR
T1 - Treatment of pancreatic cancer patient–derived xenograft panel with metabolic inhibitors reveals efficacy of phenformin
AU - Rajeshkumar, N. V.
AU - Yabuuchi, Shinichi
AU - Pai, Shweta G.
AU - De Oliveira, Elizabeth
AU - Kamphorst, Jurre J.
AU - Rabinowitz, Joshua D.
AU - Tejero, Hector
AU - Al-Shahrour, Fatima
AU - Hidalgo, Manuel
AU - Maitra, Anirban
AU - Dang, Chi V.
N1 - Publisher Copyright:
©2017 AACR.
PY - 2017/9/15
Y1 - 2017/9/15
N2 - Purpose: To identify effective metabolic inhibitors to suppress the aggressive growth of pancreatic ductal adenocarcinoma (PDAC), we explored the in vivo antitumor efficacy of metabolic inhibitors, as single agents, in a panel of patient-derived PDAC xenograft models (PDX) and investigated whether genomic alterations of tumors correlate with the sensitivity to metabolic inhibitors. Experimental Design: Mice with established PDAC tumors from 6 to 13 individual PDXs were randomized and treated, once daily for 4 weeks, with either sterile PBS (vehicle) or the glutaminase inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), transaminase inhibitor aminooxyacetate (AOA), pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA), autophagy inhibitor chloroquine (CQ), and mitochondrial complex I inhibitor phenformin/metformin. Results: Among the agents tested, phenformin showed significant tumor growth inhibition (>30% compared with vehicle) in 5 of 12 individual PDXs. Metformin, at a fivefold higher dose, displayed significant tumor growth inhibition in 3 of 12 PDXs similar to BPTES (2/8 PDXs) and DCA (2/6 PDXs). AOA and CQ had the lowest response rates. Gene set enrichment analysis conducted using the baseline gene expression profile of pancreatic tumors identified a gene expression signature that inversely correlated with phenformin sensitivity, which is in agreement with the phenformin gene expression signature of NIH Library of Integrated Network-based Cellular Signatures (LINCS). The PDXs that were more sensitive to phenformin showed a baseline reduction in amino acids and elevation in oxidized glutathione. There was no correlation between phenformin response and genetic alterations in KRAS, TP53, SMAD4, or PTEN. Conclusions: Phenformin treatment showed relatively higher antitumor efficacy against established PDAC tumors, compared with the efficacy of other metabolic inhibitors and metformin. Phenformin treatment significantly diminished PDAC tumor progression and prolonged tumor doubling time. Overall, our results serve as a foundation for further evaluation of phenformin as a therapeutic agent in pancreatic cancer.
AB - Purpose: To identify effective metabolic inhibitors to suppress the aggressive growth of pancreatic ductal adenocarcinoma (PDAC), we explored the in vivo antitumor efficacy of metabolic inhibitors, as single agents, in a panel of patient-derived PDAC xenograft models (PDX) and investigated whether genomic alterations of tumors correlate with the sensitivity to metabolic inhibitors. Experimental Design: Mice with established PDAC tumors from 6 to 13 individual PDXs were randomized and treated, once daily for 4 weeks, with either sterile PBS (vehicle) or the glutaminase inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), transaminase inhibitor aminooxyacetate (AOA), pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA), autophagy inhibitor chloroquine (CQ), and mitochondrial complex I inhibitor phenformin/metformin. Results: Among the agents tested, phenformin showed significant tumor growth inhibition (>30% compared with vehicle) in 5 of 12 individual PDXs. Metformin, at a fivefold higher dose, displayed significant tumor growth inhibition in 3 of 12 PDXs similar to BPTES (2/8 PDXs) and DCA (2/6 PDXs). AOA and CQ had the lowest response rates. Gene set enrichment analysis conducted using the baseline gene expression profile of pancreatic tumors identified a gene expression signature that inversely correlated with phenformin sensitivity, which is in agreement with the phenformin gene expression signature of NIH Library of Integrated Network-based Cellular Signatures (LINCS). The PDXs that were more sensitive to phenformin showed a baseline reduction in amino acids and elevation in oxidized glutathione. There was no correlation between phenformin response and genetic alterations in KRAS, TP53, SMAD4, or PTEN. Conclusions: Phenformin treatment showed relatively higher antitumor efficacy against established PDAC tumors, compared with the efficacy of other metabolic inhibitors and metformin. Phenformin treatment significantly diminished PDAC tumor progression and prolonged tumor doubling time. Overall, our results serve as a foundation for further evaluation of phenformin as a therapeutic agent in pancreatic cancer.
UR - http://www.scopus.com/inward/record.url?scp=85027571678&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027571678&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-17-1115
DO - 10.1158/1078-0432.CCR-17-1115
M3 - Article
C2 - 28611197
AN - SCOPUS:85027571678
SN - 1078-0432
VL - 23
SP - 5639
EP - 5647
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 18
ER -