Transport and interfacial properties of mixed molten carbonate/ hydroxide electrolytes by molecular dynamics simulations

Anirban Mondal, Jeffrey M. Young, Timothy A. Barckholtz, Gabor Kiss, Lucas Koziol, Athanassios Z. Panagiotopoulos

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We use molecular dynamics simulations based on a recently developed force field to obtain the viscosity, ionic conductivity, and liquid−vapor surface tension of molten alkali-metal carbonate−hydroxide mixtures over a range of cation and hydroxide compositions. Recent experimental and simulation studies have suggested that molten carbonates contain non-negligible amounts of hydroxide ions in the presence of water at low partial pressures of CO2. However, due to the high temperatures (≃600 °C or higher) required to melt pure alkali carbonates and their mixtures, there is a lack of experimental thermodynamic and transport data for these molten phases. Here, we deploy a recently parametrized force field for molten alkali carbonates and hydroxides [J. Chem. Theory Comput. 2020, 16, 5736−5746, DOI: 10.1021/acs.jctc.0c00285] to simulate some physical properties using atomistic molecular dynamics. Our predictions show a consistent decrease in viscosity and an increase in ionic conductivity with increasing hydroxide fractions, whereas a higher Li+ mole fraction leads to an increase in both viscosity and ionic conductivity. The computed surface tension values exhibit an upward trend with higher asymmetry in cation and anion sizes. Structural analysis suggests that in the carbonate−hydroxide melts the smaller/harder ions, OH and Li+, are more favored at the interface than the larger/softer ions, CO32− and K+/Na+. The current approach provides a systematic route to obtaining physicochemical properties of molten alkali carbonate and hydroxide mixtures over a large domain of chemical compositions and thus can steer future experimental research for molten carbonates and their applications.

Original languageEnglish (US)
Pages (from-to)23532-23540
Number of pages9
JournalJournal of Physical Chemistry C
Volume124
Issue number43
DOIs
StatePublished - Oct 29 2020

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Transport and interfacial properties of mixed molten carbonate/ hydroxide electrolytes by molecular dynamics simulations'. Together they form a unique fingerprint.

Cite this