TY - GEN
T1 - Transform Once Efficient Operator Learning in Frequency Domain
AU - Poli, Michael
AU - Massaroli, Stefano
AU - Berto, Federico
AU - Park, Jinykoo
AU - Dao, Tri
AU - Ré, Christopher
AU - Ermon, Stefano
N1 - Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3 x to 10 x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in predictive error across tasks.
AB - Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3 x to 10 x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in predictive error across tasks.
UR - http://www.scopus.com/inward/record.url?scp=85161317382&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85161317382&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85161317382
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
A2 - Koyejo, S.
A2 - Mohamed, S.
A2 - Agarwal, A.
A2 - Belgrave, D.
A2 - Cho, K.
A2 - Oh, A.
PB - Neural information processing systems foundation
T2 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Y2 - 28 November 2022 through 9 December 2022
ER -