Transfer learning on fMRI datasets

Hejia Zhang, Po Hsuan Chen, Peter Jeffrey Ramadge

Research output: Contribution to conferencePaperpeer-review

4 Scopus citations

Abstract

We explore transferring learning between fMRI datasets. A method is introduced to improve prediction accuracy on a primary fMRI dataset by jointly learning a model using other secondary fMRI datasets. We assume the secondary datasets are directly or indirectly linked to the primary dataset through sets of partially shared subjects. This method is particularly useful when the primary dataset is small. Using six fMRI datasets linked by various subsets of shared subjects, we show that the method yields improved performance in various predictive tasks. Our tests are performed on a variety of regions of interest in the brain and across various stimuli.

Original languageEnglish (US)
Pages595-603
Number of pages9
StatePublished - Jan 1 2018
Event21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 - Playa Blanca, Lanzarote, Canary Islands, Spain
Duration: Apr 9 2018Apr 11 2018

Conference

Conference21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018
CountrySpain
CityPlaya Blanca, Lanzarote, Canary Islands
Period4/9/184/11/18

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Transfer learning on fMRI datasets'. Together they form a unique fingerprint.

Cite this