Transfer learning for galaxy morphology from one survey to another

H. Doḿinguez Sanchez, M. Huertas-Company, M. Bernardi, S. Kaviraj, J. L. Fischer, T. M.C. Abbott, F. B. Abdalla, J. Annis, S. Avila, D. Brooks, E. Buckley-Geer, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, C. E. Cunha, C. B. D'Andrea, L. N. Da Costa, C. Davis, J. De Vicente, P. DoelA. E. Evrard, P. Fosalba, J. Frieman, J. Garćia-Bellido, E. Gaztanaga, D. W. Gerdes, D. Gruen, R. A. Gruendl, J. Gschwend, G. Gutierrez, W. G. Hartley, D. L. Hollowood, K. Honscheid, B. Hoyle, D. J. James, K. Kuehn, N. Kuropatkin, O. Lahav, M. A.G. Maia, M. March, P. Melchior, F. Menanteau, R. Miquel, B. Nord, A. A. Plazas, E. Sanchez, V. Scarpine, R. Schindler, M. Schubnell, M. Smith, R. C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M. E.C. Swanson, G. Tarle, D. Thomas, A. R. Walker, J. Zuntz

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Deep learning (DL) algorithms for morphological classification of galaxies have proven very successful, mimicking (or even improving) visual classifications. However, these algorithms rely on large training samples of labelled galaxies (typically thousands of them). A key question for using DL classifications in future Big Data surveys is how much of the knowledge acquired from an existing survey can be exported to a new data set, i.e. if the features learned by the machines are meaningful for different data. We test the performance of DL models, trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy Survey (DES) using images for a sample of ~5000 galaxies with a similar redshift distribution to SDSS. Applying the models directly to DES data provides a reasonable global accuracy (∼90 per cent), but small completeness and purity values. A fast domain adaptation step, consisting of a further training with a small DES sample of galaxies (∼500-300), is enough for obtaining an accuracy >95 per cent and a significant improvement in the completeness and purity values. This demonstrates that, once trained with a particular data set, machines can quickly adapt to new instrument characteristics (e.g. PSF, seeing, depth), reducing by almost one order of magnitude the necessary training sample for morphological classification. Redshift evolution effects or significant depth differences are not taken into account in this study.

Original languageEnglish (US)
Pages (from-to)93-100
Number of pages8
JournalMonthly Notices of the Royal Astronomical Society
Volume484
Issue number1
DOIs
StatePublished - Mar 21 2019

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Keywords

  • Galaxies: structure
  • Methods: observational
  • Methods: photometric
  • Surveys

Fingerprint

Dive into the research topics of 'Transfer learning for galaxy morphology from one survey to another'. Together they form a unique fingerprint.

Cite this