Transelliptical graphical models

Han Liu, Fang Han, Cun Hui Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

31 Scopus citations

Abstract

We advocate the use of a new distribution family-the transelliptical-for robust inference of high dimensional graphical models. The transelliptical family is an extension of the nonparanormal family proposed by Liu et al. (2009). Just as the nonparanormal extends the normal by transforming the variables using univariate functions, the transelliptical extends the elliptical family in the same way. We propose a nonparametric rank-based regularization estimator which achieves the parametric rates of convergence for both graph recovery and parameter estimation. Such a result suggests that the extra robustness and flexibility obtained by the semiparametric transelliptical modeling incurs almost no efficiency loss. We also discuss the relationship between this work with the transelliptical component analysis proposed by Han and Liu (2012).

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages800-808
Number of pages9
StatePublished - Dec 1 2012
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: Dec 3 2012Dec 6 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume1
ISSN (Print)1049-5258

Other

Other26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
CountryUnited States
CityLake Tahoe, NV
Period12/3/1212/6/12

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'Transelliptical graphical models'. Together they form a unique fingerprint.

  • Cite this

    Liu, H., Han, F., & Zhang, C. H. (2012). Transelliptical graphical models. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 (pp. 800-808). (Advances in Neural Information Processing Systems; Vol. 1).