Abstract
Recent works attribute the capability of in-context learning (ICL) in large pre-trained language models to implicitly simulating and fine-tuning an internal model (e.g., linear or 2-layer MLP) during inference. However, such constructions require large memory overhead, which makes simulation of more sophisticated internal models intractable. In this work, we propose a new efficient construction, Transformer in Transformer (in short, TINT), that allows a transformer to simulate and fine-tune more complex models during inference (e.g., pre-trained language models). In particular, we introduce innovative approximation techniques that allow a TINT model with less than 2 billion parameters to simulate and fine-tune a 125 million parameter transformer model within a single forward pass. TINT accommodates many common transformer variants and its design ideas also improve the efficiency of past instantiations of simple models inside transformers. We conduct end-to-end experiments to validate the internal fine-tuning procedure of TINT on various language modeling and downstream tasks. For example, even with a limited one-step budget, we observe TINT for a OPT-125M model improves performance by 4−16% absolute on average compared to OPT-125M. These findings suggest that large pre-trained language models are capable of performing intricate subroutines. To facilitate further work, a modular and extensible codebase for TINT is included.
Original language | English (US) |
---|---|
Pages (from-to) | 39448-39492 |
Number of pages | 45 |
Journal | Proceedings of Machine Learning Research |
Volume | 235 |
State | Published - 2024 |
Event | 41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria Duration: Jul 21 2024 → Jul 27 2024 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability