Train faster, generalize better: Stability of stochastic gradient descent

Moritz Hardt, Benjamin Recht, Yoram Singer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

84 Scopus citations

Abstract

We show that parametric models trained by a stochastic gradient method (SGM) with few iterations have vanishing generalization error. We prove our results by arguing that SGM is algorithmically stable in the sense of Bousquet and Elisseeff. Our analysis only employs elementary tools from convex and continuous optimization. We derive stability bounds for both convex and non-convex optimization under standard Lipschitz and smoothness assumptions. Applying our results to the convex case, we provide new insights for why multiple epochs of stochastic gradient methods generalize well in practice. In the non-convex case, we give a new interpretation of common practices in neural networks, and formally show that popular techniques for training large deep models are indeed stability-promoting. Our findings conceptually underscore the importance of reducing training time beyond its obvious benefit.

Original languageEnglish (US)
Title of host publication33rd International Conference on Machine Learning, ICML 2016
EditorsKilian Q. Weinberger, Maria Florina Balcan
PublisherInternational Machine Learning Society (IMLS)
Pages1868-1877
Number of pages10
ISBN (Electronic)9781510829008
StatePublished - 2016
Event33rd International Conference on Machine Learning, ICML 2016 - New York City, United States
Duration: Jun 19 2016Jun 24 2016

Publication series

Name33rd International Conference on Machine Learning, ICML 2016
Volume3

Other

Other33rd International Conference on Machine Learning, ICML 2016
CountryUnited States
CityNew York City
Period6/19/166/24/16

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Computer Networks and Communications

Fingerprint Dive into the research topics of 'Train faster, generalize better: Stability of stochastic gradient descent'. Together they form a unique fingerprint.

Cite this