Tracing the critical locus for binary fluid mixtures using molecular simulations

Research output: Contribution to conferencePaper

Abstract

Phase behavior at high temperatures and pressures have numerous applications,particularly in separation processes. Numerous studies have employed the use of equations of state to determine the critical locus for a binary mixture, but little work has been done using molecular simulation. We determine the critical locus for a variety of binary mixtures including non-polar, polar, and ionic species using grand canonical Monte Carlo simulations with histogram reweighting. The critical point is determined using the finite-size scaling approach of Bruce and Wilding [1]. Different classes of the critical locus in binary mixtures, such as Class I and Class IIIb, are seen for systems including methane-ethane, methane-water, and water-NaCl. The choices for the intermolecular potentials and the combining rule between species have a significant impact on the critical locus. Finally, the effect of including polarization in the methane-water mixture on the critical locus is presented.

Original languageEnglish (US)
Number of pages1
StatePublished - Dec 1 2005
Event05AIChE: 2005 AIChE Annual Meeting and Fall Showcase - Cincinnati, OH, United States
Duration: Oct 30 2005Nov 4 2005

Other

Other05AIChE: 2005 AIChE Annual Meeting and Fall Showcase
CountryUnited States
CityCincinnati, OH
Period10/30/0511/4/05

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Tracing the critical locus for binary fluid mixtures using molecular simulations'. Together they form a unique fingerprint.

  • Cite this

    Lenart, P. J., & Panagiotopoulos, A. Z. (2005). Tracing the critical locus for binary fluid mixtures using molecular simulations. Paper presented at 05AIChE: 2005 AIChE Annual Meeting and Fall Showcase, Cincinnati, OH, United States.