Towards strong nonapproximability results in the Lovasz-Schrijver hierarchy

Mikhail Alekhnovich, Sanjeev Arora, Iannis Tourlakis

Research output: Contribution to journalConference articlepeer-review

36 Scopus citations

Abstract

Lovász and Schrijver described a generic method of tightening the LP and SDP relaxation for any 0-1 optimization problem. These tightened relaxations were the basis of several celebrated approximation algorithms (such as for MAX-CUT, MAX-3SAT. and SPARSEST CUT). We prove strong inapproximability results in this model for well-known problems such as MAX-3SAT, HYPERGRAPH VERTEX COVER and SET COVER. We show that the relaxations produced by as many as Ω(n) rounds of the LS + procedure do not allow nontrivial approximation, thus ruling out the possibility that the LS + approach gives even slightly subexponential approximation algorithms for these problems. We also point out why our results are somewhat incomparable to known inapproximability results proved using PCPs, and formalize several interesting open questions.

Original languageEnglish (US)
Pages (from-to)294-303
Number of pages10
JournalProceedings of the Annual ACM Symposium on Theory of Computing
DOIs
StatePublished - 2005
Event13th Color Imaging Conference: Color Science, Systems, Technologies, and Applications - Scottsdale, AZ, United States
Duration: Nov 7 2005Nov 11 2005

All Science Journal Classification (ASJC) codes

  • Software

Keywords

  • Inapproximability
  • Integrality gaps
  • Lovász-Schrijver matrix cuts

Fingerprint

Dive into the research topics of 'Towards strong nonapproximability results in the Lovasz-Schrijver hierarchy'. Together they form a unique fingerprint.

Cite this