TY - GEN
T1 - Towards optimal deterministic coding for interactive communication
AU - Gelles, Ran
AU - Haeupler, Bernhard
AU - Kol, Gillat
AU - Ron-Zewi, Noga
AU - Wigderson, Avi
N1 - Publisher Copyright:
© Copyright (2016) by SIAM: Society for Industrial and Applied Mathematics.
PY - 2016
Y1 - 2016
N2 - We study efficient, deterministic interactive coding schemes that simulate any interactive protocol both under random and adversarial errors, and can achieve a constant communication rate independent of the protocol length. For channels that flip bits independently with probability ∈ < 1/2, our coding scheme achieves a communication rate of 1-0(√/H(∈)) and a failure probability of exp(-n/logn) in length n protocols. Prior to our work, all nontrivial deterministic schemes (either efficient or not) had a rate bounded away from 1. Furthermore, the best failure probability achievable by an efficient deterministic coding scheme with constant rate was only quasi-polynomial, i.e., of the form exp(-log(1) n) (Braverman, ITCS 2012). For channels in which an adversary controls the noise pattern our coding scheme can tolerate ω(1/log n) fraction of errors with rate approaching 1. Once more, all previously known nontrivial deterministic schemes (either efficient or not) in the adversarial setting had a rate bounded away from 1, and no nontrivial efficient deterministic coding schemes were known with any constant rate. Essential to both results is an explicit, efficiently encod-able and decodable systematic tree code of length n that has relative distance ω(1/log n) and rate approaching 1, defined over an 0(logn)-bit alphabet. No nontrivial tree code (either efficient or not) was known to approach rate 1, and no nontrivial distance bound was known for any efficient constant rate tree code. The fact that our tree code is systematic, turns out to play an important role in obtaining rate 1-0(√/H(∈)) in the random error model, and approaching rate 1 in the adversarial error model. A central contribution in deriving our coding schemes for random and adversarial errors, is a novel code-concatenation scheme, a notion standard in coding theory which we adapt for the interactive setting. We use the above tree code as the "outer code" in this concatenation. The necessary deterministic "inner code" is achieved by a non-trivial derandomization of the randomized interactive coding scheme of (Haeupler, STOC 2014). This deterministic coding scheme (with exponential running time, but applied here to O(logn) bit blocks) can handle an e fraction of adversarial errors with a communication rate of 1-0(√/H(∈)).
AB - We study efficient, deterministic interactive coding schemes that simulate any interactive protocol both under random and adversarial errors, and can achieve a constant communication rate independent of the protocol length. For channels that flip bits independently with probability ∈ < 1/2, our coding scheme achieves a communication rate of 1-0(√/H(∈)) and a failure probability of exp(-n/logn) in length n protocols. Prior to our work, all nontrivial deterministic schemes (either efficient or not) had a rate bounded away from 1. Furthermore, the best failure probability achievable by an efficient deterministic coding scheme with constant rate was only quasi-polynomial, i.e., of the form exp(-log(1) n) (Braverman, ITCS 2012). For channels in which an adversary controls the noise pattern our coding scheme can tolerate ω(1/log n) fraction of errors with rate approaching 1. Once more, all previously known nontrivial deterministic schemes (either efficient or not) in the adversarial setting had a rate bounded away from 1, and no nontrivial efficient deterministic coding schemes were known with any constant rate. Essential to both results is an explicit, efficiently encod-able and decodable systematic tree code of length n that has relative distance ω(1/log n) and rate approaching 1, defined over an 0(logn)-bit alphabet. No nontrivial tree code (either efficient or not) was known to approach rate 1, and no nontrivial distance bound was known for any efficient constant rate tree code. The fact that our tree code is systematic, turns out to play an important role in obtaining rate 1-0(√/H(∈)) in the random error model, and approaching rate 1 in the adversarial error model. A central contribution in deriving our coding schemes for random and adversarial errors, is a novel code-concatenation scheme, a notion standard in coding theory which we adapt for the interactive setting. We use the above tree code as the "outer code" in this concatenation. The necessary deterministic "inner code" is achieved by a non-trivial derandomization of the randomized interactive coding scheme of (Haeupler, STOC 2014). This deterministic coding scheme (with exponential running time, but applied here to O(logn) bit blocks) can handle an e fraction of adversarial errors with a communication rate of 1-0(√/H(∈)).
UR - http://www.scopus.com/inward/record.url?scp=84963620262&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84963620262&partnerID=8YFLogxK
U2 - 10.1137/1.9781611974331.ch135
DO - 10.1137/1.9781611974331.ch135
M3 - Conference contribution
AN - SCOPUS:84963620262
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 1922
EP - 1936
BT - 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016
A2 - Krauthgamer, Robert
PB - Association for Computing Machinery
T2 - 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016
Y2 - 10 January 2016 through 12 January 2016
ER -