TY - JOUR
T1 - Towards an understanding of the resolution dependence of Core-Collapse Supernova simulations
AU - Nagakura, Hiroki
AU - Burrows, Adam
AU - Radice, David
AU - Vartanyan, David
N1 - Publisher Copyright:
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Using our new state-of-the-art core-collapse supernova (CCSN) code FORNAX, we explore the dependence upon spatial resolution of the outcome and character of three-dimensional (3D) supernova simulations. For the same 19 M☉ progenitor star, energy and radial binning, neutrino microphysics, and nuclear equation of state, changing only the number of angular bins in the θ and φ directions, we witness that our lowest resolution 3D simulation does not explode. However, when jumping progressively up in resolution by factors of two in each angular direction on our spherical-polar grid, models then explode, and explode slightly more vigorously with increasing resolution. This suggests that there can be a qualitative dependence of the outcome of 3D CCSN simulations upon spatial resolution. The critical aspect of higher spatial resolution is the adequate capturing of the physics of neutrino-driven turbulence, in particular its Reynolds stress. The greater numerical viscosity of lower resolution simulations results in greater drag on the turbulent eddies that embody turbulent stress, and, hence, in a diminution of their vigor. Turbulent stress not only pushes the temporarily stalled shock further out, but bootstraps a concomitant increase in the deposited neutrino power. Both effects together lie at the core of the resolution dependence we observe.
AB - Using our new state-of-the-art core-collapse supernova (CCSN) code FORNAX, we explore the dependence upon spatial resolution of the outcome and character of three-dimensional (3D) supernova simulations. For the same 19 M☉ progenitor star, energy and radial binning, neutrino microphysics, and nuclear equation of state, changing only the number of angular bins in the θ and φ directions, we witness that our lowest resolution 3D simulation does not explode. However, when jumping progressively up in resolution by factors of two in each angular direction on our spherical-polar grid, models then explode, and explode slightly more vigorously with increasing resolution. This suggests that there can be a qualitative dependence of the outcome of 3D CCSN simulations upon spatial resolution. The critical aspect of higher spatial resolution is the adequate capturing of the physics of neutrino-driven turbulence, in particular its Reynolds stress. The greater numerical viscosity of lower resolution simulations results in greater drag on the turbulent eddies that embody turbulent stress, and, hence, in a diminution of their vigor. Turbulent stress not only pushes the temporarily stalled shock further out, but bootstraps a concomitant increase in the deposited neutrino power. Both effects together lie at the core of the resolution dependence we observe.
KW - Supernovae: general
UR - http://www.scopus.com/inward/record.url?scp=85077267801&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077267801&partnerID=8YFLogxK
U2 - 10.1093/mnras/stz2730
DO - 10.1093/mnras/stz2730
M3 - Article
AN - SCOPUS:85077267801
SN - 0035-8711
VL - 490
SP - 4622
EP - 4637
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -