Abstract
Spin-based electronics promises a radical alternative to charge-based electronics, namely the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. In this paper we review three potential means of dissipationless spin transport in semiconductors with and without spin-orbit coupling: the use of spin currents, propagating modes, and orbital currents. Spin and orbital currents induced by electric fields obey a fundamentally different law than charge transport, which is dissipative. Dissipationless spin currents occur in materials with strong spin-orbit coupling, such as GaAs, while orbital currents occur in materials with weak spin-orbit coupling, such as Si, but with degenerate bands characterized by an atomic orbital index. Spin currents have recently been observed experimentally. Propagating modes are the coupled spin-charge movement that occurs in semiconductors with spin-orbit coupling. In contrast to normal charge transport, which is diffusive, the spin-charge mode can exhibit propagating transport, with low energy loss over relatively large distances (>100 μm), by funneling energy between the spin and the charge component through the spin-orbit coupling channel. This opens the possibility for spin-based transport without either spin injection or spin detection. The schemes discussed in this paper are analyzed in comparison with schemes based on molecular electronics phenomena, dilute magnetic semiconductors, etc.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 141-148 |
| Number of pages | 8 |
| Journal | IBM Journal of Research and Development |
| Volume | 50 |
| Issue number | 1 |
| DOIs | |
| State | Published - 2006 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Computer Science