Abstract
The Telescope to Observe Planetary Systems (TOPS) is a proposed space mission to image planetary systems of nearby stars simultaneously in a few wide spectral bands covering the visible light (0.4-0.9 μm). It achieves its power by combining a high accuracy wavefront control system with a highly efficient Phase-Induced Amplitude Apodization (PIAA) coronagraph which provides strong suppression very close to the star (within 2 λ/D). The PIAA coronagraphic technique opens the possibility of imaging Earthlike planets in visible light with a smaller telescope than previously supposed. If sized at 1.2-m, TOPS would image and characterize many Jupiter-sized planets, and discover 2 RE rocky planets within habitable zones of the ≈ 10 most favorable stars. With a larger 2-m aperture, TOPS would have the sensitivity to reveal Earth-like planets in the habitable zone around ≈20 stars, and to characterize any found with low resolution spectroscopy. Unless the occurrence of Earth-like planets is very low (η⊕ <∼ 0.2), a useful fraction of the TPF-C scientific program would be possible with aperture much smaller than the baselined 8 by 3.5m for TPF, with its more conventional coronagraph. An ongoing laboratory experiment has successfully demonstrated high contrast coronagraphic imaging within 2 λ/d with the PIAA coronagraph / focal plane wavefront sensing scheme envisioned for TOPS.
Original language | English (US) |
---|---|
Article number | 66930J |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 6693 |
DOIs | |
State | Published - 2007 |
Event | Techniques and Instrumentation for Detection of Exoplanets III - San Diego, CA, United States Duration: Aug 28 2007 → Aug 30 2007 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering
Keywords
- Adaptive optics
- Coronagraphy
- Exoplanets
- Space telescopes