Topology optimization design of functionally graded bimorph-type piezoelectric actuators

Ronny C. Carbonari, Emílio C.N. Silva, Glaucio H. Paulino

Research output: Contribution to journalArticlepeer-review

48 Scopus citations


The concept of a functionally graded material (FGM) is useful for engineering advanced piezoelectric actuators. For instance, it can lead to locally improved properties, and to increased lifetime of bimorph piezoelectric actuators. By selectively grading the elastic, piezoelectric, and/or dielectric properties along the thickness of a piezoceramic, the resulting gradation of electromechanical properties influences the behavior and performance of piezoactuators. In this work, topology optimization is applied to find the optimum gradation and polarization sign variation in piezoceramic domains in order to improve actuator performance measured in terms of selected output displacements. A bimorph-type actuator is emphasized, which is designed by maximizing the output displacement or output force at selected location(s) (e.g.the tip of the actuator). The numerical discretization is based on the graded finite element concept such that a continuum approximation of material distribution, which is appropriate to model FGMs, is achieved. The present results consider two-dimensional models with a plane-strain assumption. The material gradation plays an important role in improving the actuator performance when distributing piezoelectric (PZT5A) and non-piezoelectric (gold) materials in the design domain; however, the performance is not improved when distributing two types of similar piezoelectric material. In both cases, the polarization sign change did not play a significant role in the results. However, the optimizer always finds a solution with opposite polarization (as expected).

Original languageEnglish (US)
Pages (from-to)2605-2620
Number of pages16
JournalSmart Materials and Structures
Issue number6
StatePublished - Dec 1 2007
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering


Dive into the research topics of 'Topology optimization design of functionally graded bimorph-type piezoelectric actuators'. Together they form a unique fingerprint.

Cite this