Abstract
We obtain several clustering properties of the Jain states at filling k2k+1: they are a product of a Vandermonde determinant and a bosonic polynomial at filling kk+1 which vanishes when k+1 particles cluster together. We show that all Jain states satisfy a "squeezing rule" which severely reduces the dimension of the Hilbert space necessary to generate them. We compute the topological entanglement spectrum of the Jain ν=25 state and compare it to both the Coulomb ground state and the nonunitary Gaffnian state. All three states have a very similar "low-energy" structure. However, the Jain state entanglement "edge" state counting matches both the Coulomb counting as well as two decoupled U(1) free bosons, whereas the Gaffnian edge counting misses some of the edge states of the Coulomb spectrum.
Original language | English (US) |
---|---|
Article number | 016801 |
Journal | Physical review letters |
Volume | 103 |
Issue number | 1 |
DOIs | |
State | Published - Jun 29 2009 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy